
ZERO LOOKAHEAD AND
REPEATABILITY IN THE

HIGH LEVEL
ARCHITECTURE

Richard M. Fujimoto
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

KEYWORDS
High Level Architecture, Run-Time Infrastructure, time

management

ABSTRACT
A distributed simulation is said to be repeatable
if successive executions utilizing the same inputs
produce exactly the same outputs. Repeatability
is a highly desirable property, particularly for
analytic simulation models. This paper discusses
the question of repeatability in distributed
simulations in general, and in the context of the
High Level Architecture in particular.
Specifically, allowing zero lookahead, a feature
not supported in the baseline HLA, has
important ramifications with respect to achieving
repeatable executions. Extensions to the existing
time management services in the HLA are
proposed that allow (1) repeatable executions, (2)
federate control over the ordering of simultaneous
events, and (3) zero lookahead. The extensions
proposed in this paper are currently under
consideration by DMSO for possible future
inclusion in the High Level Architecture time
management services.

1 . INTRODUCTION

It is sometimes important that repeated
executions of a simulation program using the
same inputs and initial conditions (random
number seeds, etc.) produce exactly the same
results as previous executions, particularly in
simulations used for analysis. This may be
necessary because independent agencies need to
re-run simulation programs to verify previously
reported results. Repeatability is also helpful in
debugging the simulation program because it
facilitates identification and correction of bugs
and erroneous results.

It is usually straight-forward, if not trivial, to
achieve repeatability in sequential simulation
programs, at least if the same computing
hardware is used for each execution. In general,
one need only ensure individual computations do
not perform non-repeatable operations such as
reading the real-time clock, and ensure the same
external inputs are provided to the simulation
program. If the computing platform changes
from one execution to the next, one must also
ensure that machine operations (e.g., floating
point round-off) yield the same results across the
different platforms.

Repeatability is not as easily obtained in a
distributed simulation, however, even if the
individual simulation computations within each
processor are repeatable. In training simulations
(e.g., using DIS protocols), many factors prevent
the repeatability of simulation executions. A
few obvious ones include the use of best effort
message delivery (different messages will be lost
from one execution to the next), receive ordered
processing of events (messages will usually be
received in a different order from one execution to
the next), and lack of repeatability for interactive
inputs. Repeatability can, in effect, be achieved
by producing a log of events during an initial,
reference execution, and utilizing this log in
subsequent executions to ensure events are
processed in the same order using the same data
from one execution to the next.

Achieving repeatability is more straightforward
in distributed simulations utilizing logical time.
Logical time simulations typically use reliable
message delivery, and external inputs can be

applied in a repeatable fashion by ensuring the
same time stamp is assigned to each external
input in subsequent executions. The
computation performed by each simulator
(federate, in HLA terminology) can be viewed as
a sequence of sub-computations, one for each
event generated locally or by other federates. A
key observation that greatly facilitates
repeatability is events are processed in time
stamp order. Thus, ignoring events containing
the same time stamp, one need only ensure each
event computation is repeatable, thereby ensuring
the same events will be created in each execution,
to ensure repeatability of the distributed
simulation.

In addition to processing events in time stamp
order, one must also ensure that events
containing the same time stamp are processed in
the same order on each execution to ensure
repeatability. Moreover, the treatment of these
so-called simultaneous events must be handled in
a way that satisfies the requirements imposed by
modelers developing the simulation program.
There may be causal relationships between
simultaneous events, e.g., processing an event at
time T may result in scheduling a new event
with the same time stamp. This paper examines
these issues, and describes the approach now
being explored by DMSO for inclusion in the
DoD High Level Architecture.

This paper focuses exclusively on repeatability in
logical time-based distributed simulations. The
next sections define terminology used throughout
this paper and review related work. Requirements
on the HLA approach to repeatability, as
expressed by protofederations involved in
experimentation with the HLA are described.
The sections that follow describe the approach
currently defined in the HLA to achieving
repeatability assuming non-zero lookahead, and
proposed extensions to this approach where zero
lookahead is allowed.

2 . DEFINITIONS

A distributed simulation is said to be repeatable
if subsequent executions of the simulation using
the same initial conditions and input as a
“reference” execution produce exactly the same
results (e.g., model statistics) as the reference
execution. Simultaneous events refer to two or
more events containing the same time stamp.

Distributed logical time simulations in general,
and specifically those defined in the HLA, utilize
a non-negative quantity called lookahead. If a
federate at logical time T has a lookahead of L,
any event scheduled by the federate must have a
time stamp of at least T+L. Lookahead is used
to define a lower bound on the time stamp of
messages produced by a simulator later during the
execution (T+L in this example) since the current
logical time of a simulator can never decrease.
By computing a minimum of this lower bound
across all simulators that can send messages to
another simulator S, one can derive a lower
bound on the time stamp of messages that will
be delivered to S in the future. This lower bound
is important because it means S can process
messages with time stamp smaller than this
lower bound without fear of later receiving a
smaller time stamped message, which would
violate the constraint that all events be processed
in time stamp order. The HLA currently calls for
each federate to define a positive (i.e., non-zero)
value of lookahead[1].

It is assumed that time stamp ordered and reliable
delivery (as defined in [2]) are used for all
messages during the federation execution.
Further, it is assumed that individual
computations performed by each simulator in the
distributed simulation are repeatable, at least to
the extent that these computations affect the
results produced by the distributed simulation.

3 . RELATED WORK

Repeatability may be accomplished by using a
tie-breaking mechanism to ensure repeatable
ordering of simultaneous events. Two related
issues are user control over the ordering of
simultaneous events, and whether or not zero
lookahead is allowed. Related work concerning
each of these subjects are discussed next.

3 .1 Tie-Breaking Mechanisms

Work in the parallel discrete event simulation
community concerning repeatability has been
primarily concerned with developing repeatable
tie breaking mechanisms to ensure simultaneous
events are ordered in a repeatable (or sometimes
called deterministic) fashion[3]. This is typically
accomplished by the underlying distributed
simulation executive appending additional, lower
precision bits to the time stamp of each event in

order to ensure, in effect, unique time stamps.
Events will always be processed in time stamp
order, where the time stamp now includes these
tie-breaking bits, to ensure that simultaneous
events are always processed in the same order.
An important requirement of the tie-breaking bits
is if event A schedules event B, then the time
stamp for A must be less than that of B, where
the time stamp includes the tie breaking bits.

Mehl proposes that the RTI append two tie-
breaking fields to the application defined time
stamp called the age and id, with the age field
given precedence (assigned to more significant
bits) than the id field[3]. Events that exist at the
beginning of the simulation are assigned an age
of 1. If an event with time stamp T and age A
schedules another event with the same time
stamp (ignoring the extra fields), the new event
is assigned an age of A+1. If the new event has
a time stamp larger than T, the age of the new
event is 1.

The age field ensures events always schedule
other events with higher time stamps, but does
not ensure uniqueness, e.g., an event with time
stamp T, and age 5, could schedule two new
events also with time stamp T. In this case,
both events will have an age of 6. The id field
ensures uniqueness. This field is actually a tuple
with two components (S, i).1 S is the ID of the
source process (simulator) generating the event.
It is assumed process IDs remain the same from
one execution to the next. The i field is a
counter indicating this is the ith event scheduled
by the process.2

Schemes similar to this have been implemented
in other parallel simulation executives. For
example, the Time Warp Operating System
(TWOS) developed at JPL [4] and SAIC’s Tempo
system[5] use similar approaches. The TWOS
implementation uses the body of the event itself
(including parameters and other fields) for the id
field[4]. Though not guaranteeing unique time

1 Mehl actually proposes a triple, (S, i, R) where R
is the receiving process, however, this field is
redundant, so is ignored here.
2 In optimistic synchronization mechanisms such as
Time Warp, the i field only includes events that are
not later rolled back. This can be realized by
including the counter among the variables that are
state saved, and rolled back.

stamps, this approach guarantees that only
identical events will have the same time stamp,
in which case ordering is irrelevant.

3 .2 User Controlled Ordering of
Simultaneous Events

It is important that the model developer be able
to control the ordering of simultaneous events.
This is not taken into account by the tie breaking
mechanisms described in the previous section,
which are implemented in the simulation
executive (or RTI), beyond the reach of the
modeler. To illustrate this point, consider two
simultaneous missile detonation events at a
target. The order that these events are processed
affects which missile is credited with the kill.
An RTI that arbitrarily determines the order of
these events might systematically favor one
weapon system over another.

The importance of ordering simultaneous events
has long been recognized in the discrete event
simulation community. For example, this issue
is discussed extensively in [6] and several
examples are described explicitly specifying the
ordering of simultaneous events. Examples
where processing simultaneous events in an
incorrect order leads to semantic errors are
discussed in [7, 8]. Wieland observes that
statistics in a queueing network simulation vary
significantly using different rules for breaking
ties, and discusses extension of the simultaneous
event ordering problem to events containing time
stamps that are close, but not identical[9].

3 .3 Priority Fields

Priorities are sometimes used to specify the
ordering of simultaneous events. For example, a
priority number might be assigned to the event
with the semantics that an event with a smaller
priority number will be processed before other
simultaneous events containing larger priority
numbers. If a simulator schedules a zero
lookahead event (an event with time stamp equal
to the logical time of the scheduler), the priority
number of the new event must be at least as large
as that of the current event. Operationally, this
might be implemented by appending the priority
number to the time stamp so that it has lower
precedence than the application defined time
stamp, but higher precedence than the bits used
to resolve ties[3].

The main drawback with this approach is that it
requires the simulator scheduling the event to
assign the priority, but in most cases, it is more
convenient to have the simulator receiving the
events to order them. This is because the
receiver can more easily determine what other
events occur at the same logical time, and the
order in which the events should be processed
may depend on the state of the receiver. If the
ordering depends on the state of the scheduler, the
necessary information can be easily included
within the event itself.

3 .4 Zero Lookahead

A simulator at logical time T can only schedule a
new event with time stamp T if zero lookahead is
allowed. Thus, whether or not the simulation
system allows the scheduling of zero lookahead
events impacts the approach that is used to
handle simultaneous events. This will be
discussed in greater detail later in the context of
the HLA.

From the perspective of the simulation modeler,
zero lookahead events are useful for several
reasons:
• They can be used to implement query events.

Zero lookahead allows one simulator to
query another simulator for information, and
receive a response without advancing its
local simulation time. For example, once a
sensor has detected a vehicle has moved
within its range, the simulator for the sensor
might query the vehicle simulator to collect
information such as the type of vehicle,
whether or not it is a threat, etc.

• Zero lookahead can be used if the actual
advance in simulation time is so small that
it is less than the precision of time stamp
values. For example, the precision of time
stamp values might be in minutes, while the
required logical time advance is a few
seconds.

• Initial, simplified models might use zero
lookahead prior to more detailed specification
of temporal characteristics.

• A single event in the actual system might be
modeled as several, distinct, simultaneous
events in the simulation. For example, a
ship contacting a mine (from the perspective
of the ship) and the mine being struck by the
ship (from the perspective of the mine)
might be a single action in the actual

system, but could be modeled by two
distinct simultaneous events that are realized
by one event causing the second to be
scheduled.

Certain simulation protocols place constraints on
whether or not zero lookahead is allowed. The
Chandy/Misra/Bryant null message protocol[10]
does not allow a cycle of processes with zero
lookahead to exist, as this will result in an
unending cycle of null messages containing the
same time stamp. Other simulation protocols,
e.g., the deadlock detection and recovery protocol
developed by Chandy and Misra[11] do allow zero
lookahead. Jha and Bagrodia discuss lookahead
constraints for several different simulation
protocols in order to implement arbitrary user
defined ordering of simultaneous events[12].

4 . REPEATABILITY IN THE HIGH
LEVEL ARCHITECTURE

The current definition of the HLA time
management services described in [2] support
repeatable federation executions, but requires non-
zero lookahead. Protofederations using the initial
implementation of the HLA have since expressed
the desire to allow zero lookahead. Below, we
review the requirements that have been expressed
for the time management services with respect to
repeatability, lookahead, and simultaneous
events. We then describe the current approach
used in the HLA to achieve repeatability (but
relying on zero lookahead), and describe additions
to the HLA to allow repeatability in the presence
of federates with zero lookahead.

4 .1 Requirements

The HLA should conform to the following
requirements:
Requirement 1: Repeatability. It must

be possible to build federations in the HLA
where execution is repeatable. This is
important because outside agencies such as
the General Accounting Office must be able
to re-run simulations to verify results that
are used for procurement purposes. It should
be noted that the RTI cannot guarantee
repeatability of federation executions, it can
only facilitate construction of federations
where execution is repeatable.

Requirement 2: Federation control in
ordering simultaneous events. The
proper ordering of simultaneous events must

be decided within the federates, not the RTI.
This is because the appropriate ordering
usually depends on interpretation of the
meaning of the events. This issue is
especially pronounced in time-stepped
simulations where many events may occur
that contain the same time stamp. The RTI
cannot make meaningful ordering decisions
because it does not have knowledge
concerning the semantics of the events.

Requirement 3: Zero Lookahead.
Federates must be allowed to have a
lookahead value of zero. The specific use of
zero lookahead that has been cited is to allow
query events where a federate at logical time
T can request the value of an attribute from
another federate at time T, and receive the
response while remaining at logical time T.
This approach is commonly referred to as
“pull processing”.

Requirement 4: Avoidance of “logical
time creep.” “Logical time creep” is a
phenomenon where logical time throughout
the federation advances very slowly when
there are no events in a certain interval of
logical time. It is well known that the
Chandy/Misra/Bryant algorithm[10] is
susceptible to this phenomenon (e.g., see
[13]). To illustrate this problem, consider
the situation where all federates are at logical
time 10, each federate has a lookahead of 1,
and the smallest time stamped event in the
entire federation has a time stamp value of
100. The CMB algorithm will advance the
logical time of each federate to 11, 12, 13,
... 99, 100 (more generally, in steps of the
lookahead size), with each increment to the
next logical time value only occurring after
NULL messages are exchanged among the
RTIs. This problem is easily eliminated by
the RTI recognizing that the next event has
time stamp 100, and immediately advancing
all of the federates to logical time 100.
Several synchronization algorithms are
described in the parallel discrete event
simulation literature exploiting this fact
(e.g., [11] was perhaps the first, see[14] for
others). It should be noted, however, that
even with the use of more advanced
algorithms, small lookahead values will
usually result in very limited concurrent
execution unless other techniques (e.g.,
optimistic event processing) are used.

The logical time creep problem is an RTI
implementation issue and is not discussed further
here. Version 0.X of the RTI used the
Chandy/Misra/Bryant algorithm, and was thus
susceptible to this problem. This problem has
subsequently been addressed by the
familiarization version of the RTI, F.0. Further
experimentation is required to determine if
adequate performance has been achieved in this
version.

The remainder of this document addresses the first
three requirements. Changes to the time
management services are proposed that satisfy all
three requirements.

4 .2 Repeatability with Non-Zero
Lookahead

As mentioned earlier, the RTI can facilitate, but
cannot guarantee repeatability. A number of other
issues must be addressed such as ensuring the
same random number generator seeds are used,
the same inputs and initial state are used, floating
point round off is the same from one execution
to the next, etc. The RTI supports repeatability
to the extent that it enables repeatable ordering of
simultaneous events.

Requirements 1 and 2 (repeatability and federate
control of the ordering of simultaneous events)
can be achieved with the current specification of
the time management services assuming non-zero
lookahead. The following property in the current
specification can be exploited to satisfy these two
requirements:

Property A: if the RTI issues a Time
Advance Grant to time T, the RTI
guarantees that all messages with time
stamp equal to T (or less than T) have
been delivered to the federate.

This implies that all simultaneous events with
time stamp T have been passed to the federate.
The federate may simply order these events
according to whatever criteria is appropriate, and
process the simultaneous events in that order.
So long as the federate uses a repeatable
algorithm for ordering simultaneous events, both
requirements 1 and 2 will be satisfied.

It is noteworthy that the above approach does not
require the RTI to deliver simultaneous events to

the federate in a repeatable fashion, i.e., messages
for a set of simultaneous events may be delivered
by the RTI in a different order from one
execution to the next. Because the federate will
order events according to its own criteria, it does
not matter what order the RTI delivers them.
The current specification of time management
services actually calls for the same order of
delivery, though this functionality has not been
implemented in either Version 0.X or F.0 of the
RTI. The fact that federates must be able to
explicitly control the order of simultaneous
events suggests that this functionality is not
required. However, RTI automated ordering of
simultaneous events does provide a simple means
for achieving repeatable executions where
arbitrary ordering of simultaneous events is
acceptable because the federate can simply
process the events in the order that they are
delivered by the RTI.

4 .3 Repeatability with Zero Lookahead

The approach described above for non-zero
lookahead fails when zero lookahead is allowed
because it is impossible to maintain property A
(delivery of all events with time stamp T when
the RTI issues a grant to time T). This is true in
both sequential and distributed simulations. A
proof of this statement follows.

Theorem 1: If zero lookahead is allowed, it is
impossible for a Time Advance Grant to
time T to guarantee it has delivered all messages
with time stamp equal to T.

Proof (by contradiction): Suppose
an RTI claimed to support both zero
lookahead and Property A. Consider the
following scenario: (a) Federate F1

invokes Next Event Request, and
receives a Time Advance Grant to
time T. By property A, the RTI
guarantees it has delivered all messages
with time stamp T (or less) to federate F1.
(b) Federate F1 performs an Update
Attribute Values with time stamp T.
It can do this because zero lookahead is
allowed. (c) Federate F2 receives a
message for this attribute update with
time stamp T, and generates a second
Update Attribute Values with time
stamp T. (d) The second update generates
a new message that is sent to federate F1,

with time stamp equal to T. This last
message contradicts the original assertion
that Federate A had received all messages
with time stamp T.

Thus, there is a natural tension between zero
lookahead and federate controlled ordering of
simultaneous events. The latter requires that the
RTI guarantee the federate that it has delivered all
messages with time stamp T so that the federate
can produce an appropriate, repeatable ordering of
the simultaneous events (otherwise the federate
must determine what other simultaneous events
it might receive in the future, a difficult task),
but the above discussion indicates that this is
impossible if zero lookahead is allowed. The
proposed solution to this dilemma is to (1) allow
zero lookahead federates, but (2) provide a
separate mechanism where a federate wishing to
receive all events at time T can do so, but at the
cost that it must temporarily have a non-zero
lookahead in order to allow such a mechanism to
be implemented.

Two “flavors” of the primitives for advancing
logical time are proposed. For the purposes of
discussion, changes to the Next Event
Request service are described, however, identical
changes are also proposed for the Time
Advance Request service. The first flavor is a
new service called Next Event Request
Available that is similar to the Next Event
Request service now provided in the HLA, but
changes the semantics of the resulting Time
Advance Grant to accommodate zero
lookahead federates. The second flavor is
essentially the same as the current service, and
accommodates federates needing to have all
simultaneous events delivered to it when the
grant is issued.

Specifically, to allow zero lookahead federates,
Property A must be replaced with a weaker
property. Property B, defined below, is defined
to accommodate zero lookahead.

Property B: if the RTI issues a Time
Advance Grant to time T in response
to an invocation of the Next Event
Request Available (T’) service, the
RTI guarantees that all messages with
time stamp strictly less than T have been
delivered to the federate. Some messages
with time stamp T may have been

delivered, however, additional messages
with time stamp equal to T may also be
delivered later in the execution.

Second, to accommodate federate controlled
ordering of simultaneous events, Property C is
proposed.

Property C: if the RTI issues a Time
Advance Grant to time T in response
to an invocation of the Next Event
Request (T’) service, the RTI
guarantees that all messages with time
stamp less than or equal to T have been
delivered to the federate. The federate is
prohibited from generating any new events
with time stamp less than or equal to T
subsequent to invoking the Next Event
Request (T’) service.

In property C, delivery of all events with time
stamp of T (or less) enables a federate to collect
all simultaneous events at time T, and order them
according to federation-defined rules. The RTI
thus provides the necessary support for federation
controlled, repeatable executions. The second
part of property C prevents the federate from
generating new events with time stamp of T, and
is necessary to realize the guarantee that all
events with time stamp T have been delivered.
In effect, Property C forces the federate to
(temporarily) have a non-zero lookahead. Prior to
invoking the Next Event Request (T’)
service that resulted in the issue of the Time
Advance Grant (based on property C), the
federate is allowed to generate zero lookahead
events. After the federate invokes Next Event
Request (T’) and receives a Time Advance
Grant to advance to logical time T, it may
resume scheduling zero lookahead events once the
federate advances beyond logical time T by
invoking the Next Event Request
Available service.

Different federates within a single execution may
use the different flavors of Next Event
Request. Further, a single federate may use
both of these two services, as illustrated in the
example that follows. Federates using the
existing time management mechanisms require
no changes to utilize the new services.

5 . EXAMPLE

A federate with zero lookahead requiring
repeatable executions and federate control of the
ordering of simultaneous events might use these
primitives as shown in Figure 1. In this
example, the first invocation of Next Event
Request Available is used to advance the
federate to the time of the next event.
Subsequent invocations of Next Event
Request Available can be used to receive
additional messages, e.g., responses to queries,
without advancing logical time. The final
invocation to Next Event Request is used to
flush out any remaining events containing the
same time stamp. All events that are generated
with time stamp equal to the current time (zero
lookahead) must be generated prior to this latter
invocation of Next Event Request(T).

6 . IMPLEMENTATION

Implementation of this mechanism within the
RTI is relatively straight-forward. Invocation of
Next Event Request (or Time Advance
Request) is essentially identical to the
implementation of the service that is defined
now, except the RTI must simultaneously set the
lookahead of the federate to epsilon (the smallest
time stamp increase possible) if the federate’s
lookahead is currently zero. This change is
erased once the federate advances to a new logical
time.

After the Next Event Request Available
(Time Advance Request Available)
service is invoked, the RTI issues a Time
Advance Grant to the federate once its
internally computed LBTS is greater than or
equal to the time of the grant (the current
definition requires the LBTS to exceed the time
of the grant). If the time specified by the Next
Event Request Available (or Time
Advance Request Available) is the same as
the federate’s current logical time, the RTI might
immediately return a Time Advance Grant
after delivering any relevant messages, or it may
delay issuing the grant until it has either (1)
delivered at least one message to the federate, or
(2) some federate-specified time out has expired.

An important concern with the inclusion of zero
lookahead federates is deadlock. Deadlock results
if all of the federates are blocked on a request to
advance logical time, but the RTI cannot issue a

grant to any federate. In the current time
management specification, this will occur if zero
lookahead is introduced without any additional
changes to the existing time management
services. The mechanism proposed here is not
prone to deadlock. To see this, suppose all of
the federates are blocked on a request to advance
logical time. Each such request includes a time
parameter. Let T be the value of the smallest
time parameter specified in any request. Consider
the set of federates that have specified T in their
request (in general, there may be more than one).
If at least one of these federates is blocked on a
Next Event Request Available, the RTI
can issue a grant to those federate(s) to proceed
because the RTI need only guarantee that no
additional messages with time strictly less than T
will later be received. This cannot occur (even
with zero lookahead) because all federates are
ready to advance to T (at least). If all of the
federates attempting to advance to time T are
blocked on a Next Event Request call,
Property C guarantees (in effect) a nonzero
lookahead, so all of these federates can be issued
a grant, again breaking the deadlock. Thus in
either case, no deadlock situation can occur.

/* now is a local variable tracking the logical
time of the federate */
while (simulation still in progress)

Determine time stamp of next local event
notice, TSlocal is time stamp of this notice

/* advance logical time to time of next event
*/

invoke Next Event Request Available
(TSlocal) service

Receive messages (via Reflect
Attribute Values/Receive Interaction
services)

honor RTI service request for Time
Advance Grant

now = time of grant

/* perform any zero lookahead operations,
e.g., queries, at the current time */

invoke any Update Attribute
Values/Send Interaction services with zero
lookahead

/*
 * The federate may now repeat calls to

Next Event Request Available (now)
 * and Update Attribute Values/Send

Interaction to exchange additional messages
 * without advancing logical time. For

example, additional queries may be issued here.
 */

/* retrieve all remaining events at the current
time; logical time does not advance here */

invoke (Next Event Request (now)
service

Receive messages (via Reflect
Attribute Values/Receive Interaction
services)

honor RTI service request for Time
Advance Grant

/* order any simultaneous events, process
them in proper sequence */

sort local and external events received above
using federate defined ordering rules

process local/external event notices in order,
providing any changed information

(new attribute values or interactions) to
the RTI via the Update Attribute Values

and/or Send Interaction services.

Figure 1 . Example illustrating a
federate with zero lookahead and
requiring repeatable executions and
federate controlled ordering of
simultaneous events.

7 . PROPOSAL

The following changes to the HLA time
management services are proposed. This
proposal satisfies requirements 1 (repeatability),
2 (federation control of simultaneous events), and
3 (zero lookahead).

Zero lookahead is allowed. Two new services
called Next Event Request Available and
Time Advance Request Available are
defined, and the existing Next Event Request
and Time Advance Request services are
modified:
• Next Event Request/Time Advance

Request (T’): a Time Advance Grant
to logical time T issued in response to this
request indicates all events with time stamp
less than or equal to T have been delivered to
the federate, and the federate may not
generate any new events with time stamp
equal to T, even if the federate’s lookahead is
zero. This is essentially the same as the
time management services that are now
defined. The federate may resume scheduling
events with zero lookahead once the
federate’s logical time has advanced beyond
T.
Next Event Request Available/Time
Advance Request Available (T’): a
Time Advance Grant to logical time T
issued in response to this request indicates
all events with time stamp less than T have
been delivered to the federate, and those
buffered in the RTI with time stamp T have
been passed to the federate, but additional
events may be later delivered with time
stamp equal to T. The federate may generate
additional events with time stamp equal to T
if its lookahead is zero.

In order to support repeatability when the
arbitrary ordering of simultaneous events is
satisfactory to the application, the RTI continues
to be required to deliver messages for
simultaneous events to the federate in the same
order from one execution to the next.

8 . ACKNOWLEDGMENTS

This paper is the result of extensive discussions
in the HLA Time Management working group.
In particular, Emmet Beeker, John Chludzinski,
Dannie Cutts, Jim Gump, John Hancock, Frank

Hodum, Steve Jackson, Andreas Keurkes, Reed
Little, Ray Mandery, Larry Mellon, Katherine
Morse, Michael Petty, Kent Pickett, Jonathan
Prescott, Paul Reynolds, Ed Roberts, Sudhir
Srinivasan, Jeffery Steinman, Dan Van Hook,
Richard Weatherly, Darrin West, Douglas Wood,
and Phil Zimmerman contributed to discussions
concerning this issue.

9 . REFERENCES

[1] Defense Modeling and Simulation
Organization, “HLA Interface Specification,
V. 1.0,” U.S. Department of Defense,
Washington D.C. August 1996.

[2] Defense Modeling and Simulation
Organization, “HLA Time Management
Design Document, V. 1.0,” U.S.
Department of Defense, Washington D.C.
August 1996.

[3] H. Mehl, “A Deterministic Tie-Breaking
Scheme for Sequential and Distributed
Simulation,” in Proceedings of the
Workshop on Parallel and Distributed
Simulation, vol. 24, M. Abrams and P.
Reynolds, Jr., Eds.: Society for Computer
Simulation, 1992, pp. 199-200.

[4] P. Reiher, F. Wieland, and P. Hontalas,
“Providing Determinism in the Time Warp
Operating System -Costs, Benefits, and
Implications,” in Proceedings of the
Workshop on Experimental Distributed
Systems. Huntsville, Alabama: IEEE, 1990,
pp. 113-118.

[5] D. West, L. Mellon, J. Ramsey, J. Cleary,
and J. Hofmann, “Infrastructure for Rapid
Execution of Strike-Planning Systems,” in
Proceedings of the 1995 Winter Simulation
Conference. Crystal City, Virginia, 1995,
pp. 1207-1214.

[6] T. J. Schriber, Simulation Using GPSS.
New York: John Wiley & Sons, 1974.

[7] L. Schruben, “Simulation Modeling with
Event Graphs,” Communications of the
ACM, vol. 26, 1983.

[8] T. Nakanishi, “Modeling Problems in the
Processing of Simultaneous Events,” in
Proceedings of the Summer Computer
Simulation Conference: Society for
Computer Simulation, 1992.

[9] F. Wieland, “The Threshold of Event
Simultaneity,” MITRE, Corp. 1996.

[10]K. M. Chandy and J. Misra, “Distributed
Simulation: A Case Study in Design and

Verification of Distributed Programs,” IEEE
Transactions on Software Engineering, vol.
SE-5, pp. 440-452, 1978.

[11]K. M. Chandy and J. Misra, “Asynchronous
Distributed Simulation via a Sequence of
Parallel Computations,” Communications of
the ACM, vol. 24, pp. 198-205, 1981.

[12]V. Jha and R. Bagrodia, “Simultaneous
Events and Lookahead in Simulation
Protocols,” University of California, Los
Angeles Technical Report 960043, 1996.

[13]R. M. Fujimoto, “Performance
Measurements of Distributed Simulation
Strategies,” Transactions of the Society for
Computer Simulation, vol. 6, pp. 89-132,
1989.

[14]R. M. Fujimoto, “Parallel Discrete Event
Simulation,” Communications of the ACM,
vol. 33, pp. 30-53, 1990.

